Imagine a World of Abundant Inexpensive Energy

Posted in Uncategorized at 6:08 am by Administrator

The Black Swan Blog posts have covered a wide variety of topics related to renewable energy. Many of those posts have focused on the need to develop reliable and affordable energy storage options so that wind and solar power generation can be time-shifted to match demand. No such energy storage technology is viable today but I am convinced that a number of technologies will become mainstream within 20-30 years – possibly more quickly than that.

Without in any way minimizing the challenges that lay ahead with energy storage (which I think should get vastly more R&D funding than is the case today) I thought it would be interesting to imagine what the world would be like when electricity is being generated primarily from renewable sources.

Renewables, whether they be always available such as hydro, hydro-kinetics, or geothermal, or whether they need support in the form of energy storage (wind and solar) all have very low long-term operating costs. Because they do not require any input fuel the only ongoing costs are operations and maintenance which are, in most cases, quite low. So what would be the impact of abundant and cheap electricity that has minimal negative environmental impacts?

Food Production:

About half of the world’s population live north of 27 degrees latitude. That means that there are a lot of people living in areas where crops cannot grow for 1/3 of the year or more. As a result many large population centers are completely dependent upon agricultural production from areas farther south.

The transportation of these agricultural products requires large amounts of energy and inevitably results in a great deal of spoilage. In a world where electricity is abundant and inexpensive there would likely be a significant shift of food production to greenhouses in more northern areas. The result would be fresher produce and lower carbon emissions from the transportation sector.

Water through Desalination

Throughout human history there have been areas of the world experiencing drought. From the dust-bowels of the 1930’s in North America to the more recent dry spells in Australia and California a lack of fresh water can severely reduce food production as well as causing a variety of other problems.

Because transportation and trade via ocean-going vessels has been important to human settlements for millenia many large cities are located on the coastline. For those populations desalination would provide all the fresh water needed. Although such plants have been deployed quite extensively, notably in the Middle East, the cost of energy required for these plants has been a significant deterrent. It should be noted that more than 1% of the world’s daily oil production is burnt in the Middle East to desalinate sea water. In a world where electricity is abundant and inexpensive desalination would become a viable option everywhere.

Areas such as North Africa could possibly be transformed to conditions similar to those experienced during the last “Green Sahara” period which ended about 5,500 years ago. The result would be greater self-sufficiency and improved living conditions for the millions of people suffering through the repeated droughts that have afflicted Sub-Saharan Africa over the past decade.

The Al Khafji Solar-powered desalination plant in Saudi Arabia may be a “postcard from the future”. Using the power of the intense solar radiation common in the area this plant will replace the burning of oil to produce 60,000 cubic metres of water a day.

Inexpensive electricity could be used to power vastly expanded mass transit systems as well as the factories that will manufacture the trolleys and trains that will be used in those systems. Inexpensive electricity will reduce the costs of heating and cooling homes and offices with the result that families and businesses will have more disposable income. It is a fact that inexpensive electricity will transform human society in ways as significant and unimaginable as any technological innovation that has been experienced to date.

And that does raise a concern.

On ancient maps and globes uncharted territory was annotated with warnings such as “here be dragons” or “here be lions”, the intention being to discourage potential explorers or at least advise them to be well armed! A world of abundant and inexpensive energy may also have dragons that we need to guard against. As far as I am concerned the largest and most deadly of these would be the concentration of ownership of this energy by organizations that were not acting in the public good.

In most jurisdictions in the world electricity production is either publicly owned or managed by organizations that are monitored and controlled by public utility commissions or similar bodies. This system, although it suffers from inertia in some cases, has by and large worked quite effectively. As long as the new renewable energy sources continue to be part of this type of structure there is no real danger.

Considering all the positive consequences that could be realized in a world fueled by renewable energy it is reasonable to try and map out the path to get us to that blissful state as quickly as possible.

In my postings here at the Black Swan Blog I have identified numerous technologies that can be used today to store energy. I have also identified the problems associated with each of them. The bottom line, which few green energy advocates are honest enough to admit, is that energy storage on the scale required to transition to 100% wind and solar is not even close to being a reality. Euan Mearns has conducted detailed technical analyses on several real world scenarios. His summary post is a worthwhile read.

As daunting as the technical challenges are the real problem with energy storage is political will and funding. Politicians, with the best of intentions, continue to chase energy mirages such as roof-top solar and wind without storage under the entirely false theory that those approaches can achieve the desired result – a world powered by renewable energy sources.

They cannot.

The intermittent and unpredictable nature of those sources causes escalating problems when implemented to any significant degree. Denmark, Germany, and Hawaii represent well documented case studies that prove without any doubt that every step forward in the development of renewables increases the difficulty of taking the next step.

Having said that, one or more viable and economical energy storage systems would make all the problems go away. A large portion of the solar energy received at mid-day could be shifted to the evening and night. The huge variability of wind energy could be reshaped to better match demand curves. Regulation of electricity flowing into regional grids would mean that costly upgrades would not be necessary.

But in today’s world it is impossible to make a business case for a utility-scale energy storage solution.

In almost every jurisdiction there is little or no support for energy storage solutions. Instead, energy storage developers are faced with having to purchase electricity from local utilities, including paying a grid transmission fee, then store the electricity using some hugely expensive and largely unproven technology, then try and resell the electricity back into the grid in competition with other sources including cheap coal and natural gas-fired plants. Just as in the 1951 cartoon “Cheese Chasers” this scenario just don’t add up!.

Substantially increased R&D funding and operational support for energy storage are essential. A Feed-In-Tarriff for energy retrieved from storage should be provided.

In the short term, as energy storage solutions mature, more support should be provided for existing dispatchable energy sources such as geothermal and hydro-kinetics. These are sources that, despite very compelling attributes, also continue to suffer from a lack of R&D funding and direct financial support.

A sustainable energy future is possible with all the positive benefits that come with it. We just need to want it badly enough to make the best investments possible to achieve the desired result. There are more ideas discussed in my Sustainable Energy Manifesto.


Leave a Comment

You must be logged in to post a comment.